On A Law of Large Number for Last Passage Percolation on Complete Graph

Xian-Yuan Wu

e-mail:wuxy@cnu.edu.cn

School of Mathematical Sciences, Capital Normal University, Beijing, 100048, P. R. China

15th Workshop on Markov Processes and Related Topics Changchun, China, July 11-15, 2019

This report based on the joint work of

Feng Wang

and

Rui Zhu.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

- Introduction
- Results
- On the proofs

The Model Existence Theorem of Time Constant $\mu = \infty$ case: to bound W_n/n .

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Last passage percolation on complete graph

 $G_n = ([n], E_n)$: the complete graph , where

$$[n] = \{1, 2, \dots, n\}, E_n = \{\langle i, j \rangle : 1 \le i < j \le n\}.$$

 $\{X_e : e \in E_n\}$: i.i.d. positive random variables, edge passage times.

 $\Pi_{1,n}$: the set of all self-avoiding paths between vertex 1 and n. $T(\pi)$: the passage time of path $\pi \in \Pi_{1,n}$

$$T(\pi) = \sum_{e \in \pi} X_e.$$

 W_n : the largest passage time among all self-avoiding paths from 1 to n, i.e.,

$$W_n = \sup_{\pi \in \Pi_{1,n}} T(\pi).$$

The Model Existence Theorem of Time Constant $\mu = \infty$ case: to bound W_n/n .

1. The time constant μ exists!

Theorem 1

For any distribution of edge passage time, the time constant of the model exists. More precisely, there exists some constant $0 < \mu \leq \infty$, such that

$$\frac{W_n}{n} \to \mu$$
 a.s.

as $n \to \infty$. In particular, when $\mu < \infty$, the above convergence is also in L_1 . Furthermore, μ coincides with the essential supremum of X_e , i.e.

$$\mu = \inf\{x : \mathbb{P}(X_e > x) = 0\}.$$

2. Lower and upper bounds for W_n/n

Let $F(x) = \mathbb{P}(X_e \leq x)$ and H(x) = 1 - F(x), $x \in \mathbb{R}$ be the distribution function and the tail probability function of X_e . By Theorem 1, when $\mu = \infty$, W_n/n tends to ∞ as $n \to \infty$. Here, we give lower and upper bounds to W_n/n as in the following theorem.

Theorem 2

Suppose that $\mu = \infty$. Let f and g be two functions such that $H(f(n)) = \ln n/n$ and $n^2 H(g(n)) \to 0$ as $n \to \infty$. Then, for any $\epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\left((1 - \epsilon) f(n) \le \frac{W_n}{n} \le g(n) \right) = 1.$$

A classification of increasing function Statement of Result

A classification of increasing function

Typically increasing function:

Let's consider the usual exponential function $\exp(x)$. For any $n \in \mathbb{Z}$, write $\exp^n(x)$ as the *n*-th iteration of the exponential function. Note that, by convention, $\exp^0(x) = x$, $\exp^{-1}(x) = \log(x)$, and $\exp^{-n}(x)$ is the *n*-th iteration of $\log(x)$ for n > 0.

A function ψ is called *typically increasing*, if ψ has the form

 $\psi(x) = a[\exp^n(x)]^b + c$

with a, b > 0, $c \in \mathbb{R}$, $n \in \mathbb{Z}$, for large enough $x \in \mathbb{R}$.

Regularly increasing function:

A strictly increasing function ϕ is called *regularly increasing* if, it is differentiable (at all large enough x), and increases "regularly" compared to typically increasing functions:

for any typically increasing function ψ , IF for some increasing sequence $\{x_n\}$ with $\lim_{n\to\infty} x_n = \infty$, one has $\phi(x_n) \ge \psi(x_n)$, THEN, for all large enough x,

•
$$\phi(x) \ge \psi(x);$$

• $\phi(x) - \psi(x)$ and $\psi^{-1}(x) - \phi^{-1}(x)$ are monotone in x.

Where ϕ^{-1} and ψ^{-1} are the inverses of ϕ and ψ .

"Regular" means: $\phi - \psi$ and $\psi^{-1} - \phi^{-1}$ do not change their monotonicity frequently!

A classification of increasing function Statement of Result

Assumptions

Rewrite $H(x) = \mathbb{P}(X_e > x)$, the tail probability of X_e , in the form

$$H(x) = e^{-\beta(x)}.$$

We assume $\beta(x)$ satisfy the following technical conditions:

- A1: $\beta(x)$ is second-order differentiable and $\beta''(x)$ is continuous;
- A2: $\gamma(x) := \beta'(x)$ is monotone. In the case when $\lim_{x\to\infty} \gamma(x) = +\infty$, $\gamma(x)$ increases strictly and the function s(x) solving the equation

$$\gamma(s(x)) = D\gamma(x), \ D > 1,$$

is regularly increasing.

A classification of increasing function Statement of Result

Statement of Result

Theorem 3: Law of Large Number

Suppose that $H(x) = \mathbb{P}(X_e > x) = e^{-\beta(x)}$. If for some t > 0,

$$\varphi(t) := \mathbb{E}(e^{tX_e}) < \infty,$$

and the above assumptions A1 and A2 hold, then

$$\frac{W_n}{n\beta^{-1}(\log n)} \to 1$$

in probability as $n \to \infty$. Where β^{-1} is the inverse of β .

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のので

Introduction Law of Large Number Proofs Proof of Theorem 3

For any x > 0, let I(x) be the Legendre transform of the cumulant generating function $\log \varphi$, namely,

$$I(x) = \sup_{t>0} [xt - \log \varphi(t)].$$

First of all, we have the following lemma.

Lemma 1: Under the condition of Theorem 3, for any $\epsilon > 0$, one has

$$I[(1+\epsilon)\beta^{-1}(\log n)] \ge \log n$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

for all large enough n.

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Slowly varying function

A function f is called *slowly varying*, if for any 0 < c < 1,

$$\lim_{x \to +\infty} \frac{f(cx)}{f(x)} = 1.$$

Let

$$\alpha(x) := \frac{\beta(x)}{x},$$

then by the condition of Theorem 3

$$\lim_{x \to \infty} \alpha(x) = \alpha_0 \in (0, +\infty]$$

and when $\alpha_0 < +\infty$, the function α is slowly varying.

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Proof of Lemma 1

We prove Lemma 1 in two steps.

Step 1: The case $\alpha(x) = \frac{\beta(x)}{x}$ is slowly varying.

$$\varphi(t) = \int_0^{+\infty} \mathbb{P}(e^{tX_e} > x) dx = 1 + \int_1^{+\infty} H(\frac{\ln x}{t}) dx.$$

For large enough x and small c > 0, let $\lambda_0 = \alpha(c\beta^{-1}(x))$, one has

$$\varphi(t) \leq e^{c\beta^{-1}(x)t} + \int_{e^{c\beta^{-1}(x)t}}^{+\infty} e^{-\frac{\lambda_0}{t}\log y} dy$$
$$= e^{c\beta^{-1}(x)t} \left(\frac{\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0}\right)t}{\lambda_0 - t} \right)$$

for all $0 < t < \lambda_0$.

◆ロ > ◆母 > ◆臣 > ◆臣 > 善臣 の Q @

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Then

$$I((1+\epsilon)\beta^{-1}(x))$$

$$\geq \sup_{0 < t < \lambda_0} \left[(1+\epsilon-c)\beta^{-1}(x)t - \log\left(\frac{\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0}\right)t}{\log(\lambda_0 - t)}\right) \right]$$

$$= \sup_{0 < t < \lambda_0} \left[\frac{(1+\epsilon-c)}{\alpha(\beta^{-1}(x))}xt - \log\left(\frac{\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0}\right)t}{\log(\lambda_0 - t)}\right) \right]$$

$$(1+\epsilon-c) = 0$$

$$= \frac{(1+\epsilon-c)}{\alpha(\beta^{-1}(x))} x t_0 - \log\left[\lambda_0 - \left(1-e^{-c\beta^{-1}(x)\lambda_0}\right)t_0\right] + \log(\lambda_0 - t_0).$$

Introduction Law of Large Number Proofs Proof of Theorem 3

Where $t_0 = t_0(x)$ fits the supremum. It is straightforward to check that

$$\frac{\lambda_0}{t_0(x)} \to 1,$$

$$\frac{1}{x} \log \left[\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0} \right) t_0 \right] \to 0 \text{ and}$$

$$\frac{1}{x} \log(\lambda_0 - t_0) \to 0$$

as $x \to +\infty$. Thus, for small enough c, we have

$$\frac{(1+\epsilon-c)}{\alpha(\beta^{-1}(x))}t_0 \to (1+\epsilon-c)\frac{\alpha(c\beta^{-1}(x))}{\alpha(\beta^{-1}(x))} > 1$$

for large enough x, then $I((1+\epsilon)\beta^{-1}(x)) \ge x$ for large enough x.

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Step 2: The case
$$\alpha(x) := \frac{\beta(x)}{x} \nearrow \infty$$
 and is NOT slowly varying.
In this step, for any $\epsilon > 0$, we try to find some $t_0 = t_0(n)$, such

that

 $(1+\epsilon)\beta^{-1}(\log n)t_0 - \log \varphi(t_0) \ge \log n$, for all large n.

Let
$$\zeta(n) = \gamma(\beta^{-1}(\log n))/\alpha(\beta^{-1}(\log n))$$
 and let
 $t_0 = \gamma(\beta^{-1}(\log n)) = \zeta(n)\alpha(\beta^{-1}(\log n)).$

Using the variable substitution $s = \frac{\log x}{\zeta(n)\log n}$, one has

$$\int_{1}^{+\infty} H(\frac{\log x}{t_0}) dx = \zeta(n) \log n \int_{0}^{+\infty} n^{g(s)} ds,$$

where

$$g(s) = \zeta(n)s - \frac{\beta(s\beta^{-1}(\log n))}{\log n}.$$

Introduction Law of Large Number Proofs Proof of Theorem 3

Then, for any $s_1 > 0$,

$$\varphi(t_0) = 1 + \zeta(n) \log n \left[\int_0^{s_1} n^{g(s)} ds + \int_{s_1}^{+\infty} n^{g(s)} ds \right]$$

Let s_1 be the solution of equation

$$g(s) = -s$$

such that, for $s > s_1$,

$$g(s) < -s.$$

Noticing that $\beta(x)$ increases strictly, one has g'(1) = 0, g'(s) > 0 when s < 1 and g'(s) < 0 when s > 1, then

$$g(1) = \sup_{s \ge 0} g(s) = \zeta(n) - 1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Law of Large Number Proofs Proof of Theorem 3

So,

$$\varphi(t_0) = 1 + \zeta(n) \log n \left[\int_0^{s_1} n^{g(s)} ds + \int_{s_1}^{+\infty} n^{g(s)} ds \right]$$

$$\leq 1 + \zeta(n) \log n \left[s_1 n^{g(1)} + \int_0^{+\infty} n^{-s} ds \right]$$

$$\leq 1 + \zeta(n) \log n \cdot \left(s_1 n^{\zeta(n)-1} + constant \right).$$

Now, for s_1 , we claim that,

 $\forall b > 0, s_1(n) \le n^b.$

Then, for any b > 0,

$$\varphi(t_0) \leq 1 + \zeta(n) \log n \cdot \left(s_1 n^{\zeta(n)-1} + constant\right)$$
$$\leq \zeta(n) \log n \cdot n^{\zeta(n)-1+b}$$

for large enough n.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

・ロト ・回ト ・ヨト ・ヨト

臣

About the claim

Actually, the equation g(s) = -s can be rewritten as

$$\gamma(\beta^{-1}(\log n)) + \alpha(\beta^{-1}(\log n)) = \alpha(s\beta^{-1}(\log n)).$$

Then

$$\gamma(\frac{s_1}{2}\beta^{-1}(\log n)) \le 4\gamma(\beta^{-1}(\log n)).$$

Let s(x) be the root of the equation

$$\gamma(s(x)) = 4\gamma(x), x > 0. \quad (*)$$

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

・ロト ・同ト ・ヨト ・ヨト

臣

By the following Lemma 2, for any b > 0,

 $s(x) \leq e^{bx}$

for large x. Then,

$$s_1(n) \le \frac{s_1(n)}{2} \beta^{-1}(\log n) \le s(\beta^{-1}(\log n)) \le s(\log n) \le n^b$$

for large enough n.

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Lemma 2 and its proof

Lemma 2: Suppose that $\lim_{x\to+\infty} \alpha(x) = +\infty$ and $\alpha(x)$ is not slowly varying, let s(x) be the solution of equation (*). Then under the condition of Theorem 3, one has

$$\forall \ b > 0, \ s(x) \le e^{bx}$$

for all large x.

Proof:

- s(x) is regularly increasing (by Assumption A2).
- 2 If not, α is slowly varying.

Introduction Law of Large Number Proofs Proof of J Proof of J

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

◆□→ ◆□→ ◆三→ ◆三→

æ

Now, we have, for any b > 0,

$$\varphi(t_0) = 1 + \zeta(n) \log n \left[\int_0^{s_1} n^{g(s)} ds + \int_{s_1}^{+\infty} n^{g(s)} ds \right]$$
$$\leq 1 + \zeta(n) \log n \left[s_1 n^{g(1)} + \int_0^{+\infty} n^{-s} ds \right]$$
$$\leq \zeta(n) \log n \cdot n^{\zeta(n) - 1 + b}$$

for large enough n.

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Hence, we have, for any b > 0

$$(1+\epsilon)\beta^{-1}(\log n)t_0 - \log \varphi(t_0) \ge (1+\epsilon)\zeta(n)\log n - \log \varphi(t_0)$$
$$\ge \left[1+\epsilon\zeta(n) - b - \frac{\log\zeta(n) + \log\log n}{\log n}\right]\log n$$

Noticing that $\zeta(n) \geq 1$, then, by taking $b = \epsilon/2$, we have

$$I((1+\epsilon)\beta^{-1}(\log n)) \geq \left[1 + \frac{1}{2}\epsilon\zeta(n) - \frac{\log\zeta(n) + \log\log n}{\log n}\right]\log n$$
$$\geq \log n$$

for large n. Thus, we finish the second step of the proof.

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

(ロ) (同) (E) (E)

Proof of Theorem 3

Lower bound part:

Theorem 2 has already given the lower bound

$$f(n) = \beta^{-1}(\log n - \log \log n),$$

so it suffices for us to prove that

$$\lim_{n \to \infty} \frac{\beta^{-1}(\log n - \log \log n)}{\beta^{-1}(\log n)} = 1. \quad (**)$$

Introduction Law of Large Number Proofs Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

When α is *slowly varying*, then for any 0 < c < 1, one has

$$1 \geq \frac{\beta^{-1}(\log n - \log \log n)}{\beta^{-1}(\log n)} \geq \frac{\beta^{-1}(c \log n)}{\beta^{-1}(\log n)} \rightarrow c$$

イロン イヨン イヨン イヨン

臣

as $n \to \infty$, (**) follows by taking $c \nearrow 1$.

Introduction Law of Large Number Proofs Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Otherwise, one has $\alpha_0=+\infty$ and by A2, $\gamma(x)$ is strictly increasing, hence,

$$\beta^{-1}(\log n) - \beta^{-1}(\log n - \log \log n)$$

$$= \int_{\log n - \log \log n}^{\log n} (\beta^{-1})'(y) dy$$
$$= \int_{\log n - \log \log n}^{\log n} \frac{1}{\gamma(\beta^{-1}(y))} dy$$
$$\leq \frac{\log \log n}{\gamma(\beta^{-1}(\log n - \log \log n))}.$$

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Then,

$$\frac{\beta^{-1}(\log n) - \beta^{-1}(\log n - \log \log n)}{\beta^{-1}(\log n)}$$

$$\leq \frac{\log \log n}{\log n - \log \log n} \frac{\alpha(\beta^{-1}(\log n - \log \log n))}{\gamma(\beta^{-1}(\log n - \log \log n))}$$

$$\leq \frac{\log \log n}{\log n - \log \log n} \to 0$$

as $n \to \infty$. Thus we get (**).

Introduction Proof o Law of Large Number Proofs Proof o Proof o

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

Upper bound part:

We have

 $\mathbb{P}(W_n \ge (1+\epsilon)n\beta^{-1}(\log n))$

$$\leq \sum_{\pi \in \Pi_{1,n}} \mathbb{P}(T(\pi) \geq (1+\epsilon)n\beta^{-1}(\log n)) \qquad (***)$$

 $\leq n! \cdot \mathbb{P}(S_n \geq (1+\epsilon)n\beta^{-1}(\log n)),$

where $S_n = \sum_{i=1}^n X_i$ and $\{X_i\}$ be i.i.d. random variables with the same distribution as X_e .

Introduction Pro Law of Large Number Proofs Pro

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

By Stirling's formula

$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + O(\frac{1}{n}) \right)$$

and the basic large deviation inequality

$$\mathbb{P}(S_n \ge an) \le e^{-I(a)n}, \text{ for } a > \mathbb{E}X_e,$$

the upper bound part of the theorem follows from (* * *) and Lemma 1:

(ロ) (部) (E) (E) (E) (の)(C)

Introduction Law of Large Number Proofs Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

$$\mathbb{P}(W_n \ge (1+\epsilon)n\beta^{-1}(\log n))$$

$$\le n! \cdot \mathbb{P}(S_n \ge (1+\epsilon)n\beta^{-1}(\log n))$$

$$\le n! \cdot e^{-nI((1+\epsilon)\beta^{-1}(\log n))}$$

$$\le e^{-n}\sqrt{2\pi n} \left(1+O(\frac{1}{n})\right) n^n e^{-n\log n}$$

$$= e^{-n}\sqrt{2\pi n} \left(1+O(\frac{1}{n})\right) \to 0.$$

Lemma 1 Proof of Lemma 1 Lemma 2 and its proof Proof of Theorem 3

(日) (四) (三) (三) (三) (三)

Thanks for your attention!