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Introduction The Model
Existence Theorem of Time Constant

pn = oo case: to bound W, /n.

Last passage percolation on complete graph

Gy, = ([n], Ey,): the complete graph , where

[n] ={1,2,...,n} E, ={(i,j) : 1 <i<j<n}.
{X.:e€ E,}: iid. positive random variables, edge passage
times.

IT; ,,: the set of all self-avoiding paths between vertex 1 and n.

T'(m): the passage time of path = € II; ,,

T(r)=> X

ecm
W,: the largest passage time among all self-avoiding paths from 1
ton, i.e.,
Wy, = sup T(m).

melly ,
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Existence Theorem of Time Constant

pn = oo case: to bound W, /n.

1. The time constant . exists!

Theorem 1

For any distribution of edge passage time, the time constant of the
model exists. More precisely, there exists some constant
0 < pu < o0, such that

W,
— 5 u as.
mn

as n — oo. In particular, when p < oo, the above convergence is
also in Ly. Furthermore, u coincides with the essential supremum
of X, i.e.

p = inf{z : P(X, > z) = 0}.
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p = oo case: to bound Wy, /n.

2. Lower and upper bounds for W, /n

Let F(x) =P(X. <z) and H(z) =1 — F(z), z € R be the
distribution function and the tail probability function of X.. By
Theorem 1, when p = oo, W, /n tends to co as n — oo. Here, we
give lower and upper bounds to W,,/n as in the following theorem.

Theorem 2

Suppose that u = co. Let f and g be two functions such that
H(f(n)) =Inn/n and n?H(g(n)) — 0 as n — oco. Then, for any

e>0
i P (1= 97) < 22 < g(a) = 1.

n—00 n
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Law of Large Number Statement of Result

A classification of increasing function

Typically increasing function:

Let's consider the usual exponential function exp(z). For any

n € Z, write exp”(x) as the n-th iteration of the exponential
function. Note that, by convention, expo(x) = 7,

exp~!(z) = log(x), and exp~"(x) is the n-th iteration of log(x)
for n > 0.

A function v is called typically increasing, if 1 has the form
Y(z) = alexp™(x)]® + ¢

with a,b > 0, c € R, n € Z, for large enough = € R.
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Law of Large Number

Regularly increasing function:

A strictly increasing function ¢ is called regularly increasing if, it is
differentiable (at all large enough ), and increases “regularly”
compared to typically increasing functions:

for any typically increasing function v, |IF for some increasing
sequence {x,} with lim,_,o x,, = 00, one has ¢(z,) > ¥(zy),
THEN, for all large enough =z,

o O(x) = P(z);
o ¢(z) —Y(x) and v~ (z) — ¢~ (x) are monotone in z.
Where ¢! and ¢)~! are the inverses of ¢ and 1.

“Regular’ means: ¢ — 1 and ¥y~' — ¢! do not change their
monotonicity frequently!
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Law of Large Number Statement of Result

Assumptions

Rewrite H(z) = P(X, > x), the tail probability of X, in the form
H(z) = e P@,

We assume [(x) satisfy the following technical conditions:

Al: B(z) is second-order differentiable and 3" (x) is
continuous;

A2: ~(z) := B'(x) is monotone. In the case when
limy, o0 Y(x) = +00, y(x) increases strictly and the
function s(z) solving the equation

V(s(z)) = Dy(z), D> 1,
is regularly increasing.
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Statement of Result

Theorem 3: Law of Large Number

Suppose that H(z) = P(X, > x) = e P _ If for some t > 0,
p(t) = E(e"*<) < oo,

and the above assumptions Al and A2 hold, then

l/Vn,

——— =1
nB~1(logn)

in probability as n — co. Where 871 is the inverse of 3.
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Lemma 2 and its proof

Proofs Proof of Theorem 3

For any > 0, let I(x) be the Legendre transform of the cumulant
generating function log ¢, namely,

I(z) = i‘;g[” — log p(t)].

First of all, we have the following lemma.

Lemma 1: Under the condition of Theorem 3, for any € > 0, one

has
I[(1 4+ ¢)B Y(logn)] > logn

for all large enough n.
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Proofs Proof of Theorem 3

Slowly varying function

A function f is called slowly varying, if for any 0 < ¢ < 1,

flex) _

vrtoo f(z)

Let

then by the condition of Theorem 3
lim a(z) = o € (0, +00]

T—00

and when oy < +o0, the function « is slowly varying.
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Proofs Proof of Theorem 3

Proof of Lemma 1

We prove Lemma 1 in two steps.

Step 1: The case a(x) = Blz) is slowly varying.
x

+00 Hool ]
o(t) = / P(etXe > z)dz =1+ (%)dm
0 1

For large enough x and small ¢ > 0, let \g = a(cf~!(x)), one has

B~ (@)t oo —20Jogy
p(t) <e - et 108y gy
ecﬁfl(z)t

Xo — (1 - e—cﬁ*w»o) ¢
Ao — t

forall 0 <t < Ag.
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Lemma 2 and its proof

Proofs Proof of Theorem 3

Then
I(1+€)B ' (2))

()\0 - (1 = e_cﬁil(z))‘o) t)]
> sup |(1+e—c)3 Hz)t—log

0<t<Xo log(Ao — t)
r —cB Nz
(1+e—c) N (B T
= sup | ot —log
0<t<ro | (B (x)) log(Ao — t)
_(I+e—0o —ef~1 (@)
= Wﬂfto log {)\0 (1 e ) to} + log(Ao — to)-
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Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

Where to = to(x) fits the supremum. It is straightforward to check
that N
0 1,
to(z)

1 _
- log [)\0 — (1 — e 1(9”)’\0) to} — 0 and

1
— lOg(Ao — to) — 0
T
as x — +o00. Thus, for small enough ¢, we have

(I+e—2c)
a(f=(z))

for large enough z, then I((1+ €)3~1(z)) > = for large enough .

to— (1+e—c)"
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Proof of Lemma 1

Lemma 2 and its proof

Proofs Proof of Theorem 3

Step 2: The case a(z) := @ oo and is NOT slowly varying.
s
In this step, for any € > 0, we try to find some ty = ty(n), such

that

(1+€)B8 (logn)ty — log p(ty) > logn, for all large n.

Let ¢(n) = v(8~" (logn))/a (6" (logn)) and let
to =v(8~'(logn)) = ¢(n)a(8~ ' (logn)).

log ©
¢(n)logn’

Using the variable substitution s = one has

+oo
H(
1 to

log =

+oo
)dz = ((n) logn/ n9)ds,
0

where

S =1 ogn
g(s)z((n)s—ﬁ(ﬁ (logn))

logn
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Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

Then, for any s; > 0,

S1 +00
©(to) =1+ ((n)logn [/ n9) ds _|_/ ng(s)ds]
0 S1
Let 51 be the solution of equation

g(s) = —s

such that, for s > s1,
g(s) < —s.

Noticing that () increases strictly, one has ¢’(1) =0, ¢'(s) >0
when s < 1 and ¢/(s) < 0 when s > 1, then

9(1) = iggg(S) =((n) — 1.
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Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

So,

il +00
o(to) =1+((n)logn [/ n9®)ds +/ ng(s)ds}
0 s

+o0
<1+((n)logn [Smg(l) -I-/ n_sds}
0

<1+ ¢(n)logn - (slnC(”)_l + constant) .
Now, for s1, we claim that,
VY b>0, si(n) <n

Then, for any b > 0,
p(to) < 1+((n)logn - (sin™~L + constant)

< ¢(n)logn - nS(M—1+b

for large enough n.
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Proofs Proof of Theorem 3

About the claim

Actually, the equation g(s) = —s can be rewritten as

(87" (logn)) + a(B~" (logn)) = a(sp~" (log n)).

Then s
7(5 8" (logn)) < 4y(6~ (log ).

Let s(x) be the root of the equation

V(s(@)) = 4y(2), 2 > 0. (%)
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Lemma 2 and its proof

Proofs Proof of Theorem 3

By the following Lemma 2, for any b > 0,
s(z) < e’
for large x. Then,

s1(n)
2

s1n) < 22 3= (10g n) < s(8~ (logn)) < s(logn) < n

for large enough n.
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Proofs Proof of Theorem 3

Lemma 2 and its proof

Lemma 2: Suppose that lim;_, a(z) = +00 and a(z) is not
slowly varying, let s(x) be the solution of equation (). Then
under the condition of Theorem 3, one has

V b>0, s(z)<e®

for all large x.

Proof:
Q@ s(x) is regularly increasing (by Assumption A2).
@ If not, « is slowly varying.
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Lemma 2 and its proof
Proof of Theorem 3

Proofs

Now, we have, for any b > 0,
S1 +o0
@(to) =1+((n)logn [/ n9)ds +/ ng(s)ds}
0 81

+o0o
<1+¢(n)logn [slng(l) +/ nsds}
0
< ¢(n)logn - né(M—1+b

for large enough n.
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Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

Hence, we have, for any b > 0
(1+€)8 " (logn)to —log ¢(te) > (1 + €)¢(n)logn — log p(to)

> |14 €((n) —b— Ww} logn

logn

Noticing that ((n) > 1, then, by taking b = €/2, we have

I((1+¢)B7t(logn)) > [1 + 3e¢(n) — Ww logn

> logn

for large n. Thus, we finish the second step of the proof.
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Proofs Proof of Theorem 3

Proof of Theorem 3

Lower bound part:

Theorem 2 has already given the lower bound
f(n) = 87 (logn — loglogn),
so it suffices for us to prove that

lim ﬁfl(l(?g n — loglogn) _ 1 (e
n—00 ﬁ—l(log 71/)
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Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

When « is slowly varying, then for any 0 < ¢ < 1, one has

B~ 1(logn —loglogn) _ B~ !(clogn)
Y2 T 5 ogn) A (ogn)

as n — 0o, (xx) follows by taking ¢ 1.
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Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

Otherwise, one has ap = +0o and by A2, y(z) is strictly
increasing, hence,

B~ t(logn) — B~ (logn — loglogn)

logn
/1 (671 ()dy

ogn—loglogn

logn 1
/log n—loglogn ’V(Bil (y))
loglogn
(6~ (logn — loglogn))’
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Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

Then,
B~ 1(logn) — B~t(logn — loglogn)
B~1(logn)
loglogn a(B~t(logn — loglogn))
~ logn — loglogn v(B8~1(logn — loglogn))
loglogn

~ logn — loglogn

as n — 00. Thus we get ().
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Proof of Lemma 1
Lemma 2 and its proof
Proof of Theorem 3

Proofs

Upper bound part:

We have
P(Wy, > (1+ €)nf~"(logn))

< Z P(T(m) > (1+ €e)nB~"(logn)) (% % %)

WGHLn
<n!-P(S, > (1+e)nB (logn)),

where S, = > | X; and {X;} be i.i.d. random variables with the
same distribution as X,.



Lemma 1
Lemma 1

2 and its proof

Proofs Proof of Theorem 3

By Stirling’s formula

1
n!=n"e "V2mn <1 + O())

n
and the basic large deviation inequality

P(S, > an) < e 1" for a > EX,,

the upper bound part of the theorem follows from (x * %) and
Lemma 1:



Lemma 1
Proof of Lemma 1

Lemma 2 and its proof
Proof of Theorem 3

Proofs

B(W, > (1 + e)nf~"(logn))
<nl-B(S, > (1+emp~ (logn)),

< nl . g—nI((A+e)8 (logn))

<e™/2mn (1+ O(L)) nremlosn

— e"v/3mn (14 0(1)) = 0,



Thanks for your attention!
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