On A Law of Large Number for Last Passage Percolation on Complete Graph

Xian-Yuan Wu

e-mail:wuxy@cnu.edu.cn

School of Mathematical Sciences, Capital Normal University, Beijing, 100048, P. R. China

 $15th$ Workshop on Markov Processes and Related Topics Changchun, China, July 11-15, 2019

This report based on the joint work of

Feng Wang

and

Rui Zhu.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

 \equiv

 299

メロメ メタメ メミメ メミメー

 \equiv

 2990

- Introduction \bullet
- **Results** \bullet
- On the proofs \bullet

[The Model](#page-3-0) [Existence Theorem of Time Constant](#page-4-0) $u = \infty$ [case: to bound](#page-5-0) W_n/n .

Last passage percolation on complete graph

 $G_n = ([n], E_n)$: the complete graph, where

$$
[n] = \{1, 2, \dots, n\}, E_n = \{\langle i, j \rangle : 1 \le i < j \le n\}.
$$

 ${X_e : e \in E_n}$: i.i.d. positive random variables, edge passage times.

 $\Pi_{1,n}$: the set of all self-avoiding paths between vertex 1 and n. $T(\pi)$: the passage time of path $\pi \in \Pi_{1,n}$

$$
T(\pi) = \sum_{e \in \pi} X_e.
$$

 W_n : the largest passage time among all self-avoiding paths from 1 to n, i.e.,

$$
W_n = \sup_{\pi \in \Pi_{1,n}} T(\pi).
$$

[The Model](#page-3-0) [Existence Theorem of Time Constant](#page-4-0) $u = \infty$ [case: to bound](#page-5-0) W_n/n .

1. The time constant μ exists!

Theorem 1

For any distribution of edge passage time, the time constant of the model exists. More precisely, there exists some constant $0 < \mu \leq \infty$, such that

$$
\frac{W_n}{n} \to \mu \text{ a.s.}
$$

as $n \to \infty$. In particular, when $\mu < \infty$, the above convergence is also in L_1 . Furthermore, μ coincides with the essential supremum of X_e , i.e.

$$
\mu = \inf\{x : \mathbb{P}(X_e > x) = 0\}.
$$

∢ ロ ▶ (伊) (ミ) (ミ) nar

[Introduction](#page-3-0) [Law of Large Number](#page-6-0) [Proofs](#page-10-0) [The Model](#page-3-0) [Existence Theorem of Time Constant](#page-4-0) $\mu = \infty$ [case: to bound](#page-5-0) W_n/n .

2. Lower and upper bounds for W_n/n

Let $F(x) = \mathbb{P}(X_e \leq x)$ and $H(x) = 1 - F(x)$, $x \in \mathbb{R}$ be the distribution function and the tail probability function of X_e . By Theorem 1, when $\mu = \infty$, W_n/n tends to ∞ as $n \to \infty$. Here, we give lower and upper bounds to W_n/n as in the following theorem.

Theorem 2

Suppose that $\mu = \infty$. Let f and g be two functions such that $H(f(n))=\ln n/n$ and $n^2H(g(n))\to 0$ as $n\to\infty.$ Then, for any $\epsilon > 0$ $\lim_{n\to\infty} \mathbb{P}\left((1-\epsilon)f(n)\leq \frac{W_n}{n}\right)$ $\frac{V_n}{n} \leq g(n)$ = 1.

> **K ロ ▶ (伊 ▶ (唐 ▶ (唐 ▶**) Ω

A classification of increasing function

Typically increasing function:

Let's consider the usual exponential function $\exp(x)$. For any $n \in \mathbb{Z}$, write $\exp^n(x)$ as the n-th iteration of the exponential function. Note that, by convention, $\exp^0(x)=x$, $\exp^{-1}(x) = \log(x)$, and $\exp^{-n}(x)$ is the *n*-th iteration of $\log(x)$ for $n > 0$.

A function ψ is called typically increasing, if ψ has the form

 $\psi(x) = a[\exp^n(x)]^b + c$

with $a, b > 0$, $c \in \mathbb{R}$, $n \in \mathbb{Z}$, for large enough $x \in \mathbb{R}$.

 $2QQ$

Regularly increasing function:

A strictly increasing function ϕ is called *regularly increasing* if, it is differentiable (at all large enough x), and increases "regularly" compared to typically increasing functions:

for any typically increasing function ψ . IF for some increasing sequence $\{x_n\}$ with $\lim_{n\to\infty} x_n = \infty$, one has $\phi(x_n) \geq \psi(x_n)$, THEN, for all large enough x ,

•
$$
\phi(x) \geq \psi(x)
$$
;

• $\phi(x) - \psi(x)$ and $\psi^{-1}(x) - \phi^{-1}(x)$ are monotone in x.

Where ϕ^{-1} and ψ^{-1} are the inverses of ϕ and $\psi.$

"Regular" means: $\phi - \psi$ and $\psi^{-1} - \phi^{-1}$ do not change their monotonicity frequently!K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글

Assumptions

Rewrite $H(x) = \mathbb{P}(X_e > x)$, the tail probability of X_e , in the form

$$
H(x) = e^{-\beta(x)}.
$$

We assume $\beta(x)$ satisfy the following technical conditions:

- A1: $\beta(x)$ is second-order differentiable and $\beta''(x)$ is continuous;
- A2: $\gamma(x) := \beta'(x)$ is monotone. In the case when $\lim_{x\to\infty} \gamma(x) = +\infty$, $\gamma(x)$ increases strictly and the function $s(x)$ solving the equation

$$
\gamma(s(x)) = D\gamma(x), \ D > 1,
$$

is regularly increasing.

[A classification of increasing function](#page-6-0) [Statement of Result](#page-8-0)

Statement of Result

Theorem 3: Law of Large Number

Suppose that $H(x) = \mathbb{P}(X_e > x) = e^{-\beta(x)}$. If for some $t > 0$,

 $\varphi(t):=\mathbb{E}(e^{tX_e})<\infty,$

and the above assumptions A1 and A2 hold, then

$$
\frac{W_n}{n\beta^{-1}(\log n)} \to 1
$$

in probability as $n\to\infty.$ Where β^{-1} is the inverse of $\beta.$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ Ω

For any $x > 0$, let $I(x)$ be the Legendre transform of the cumulant generating function $\log \varphi$, namely,

$$
I(x) = \sup_{t>0} [xt - \log \varphi(t)].
$$

First of all, we have the following lemma.

Lemma 1: Under the condition of Theorem 3, for any $\epsilon > 0$, one has

$$
I[(1+\epsilon)\beta^{-1}(\log n)] \ge \log n
$$

 Ω

for all large enough n .

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

Slowly varying function

A function f is called *slowly varying*, if for any $0 < c < 1$,

$$
\lim_{x \to +\infty} \frac{f(cx)}{f(x)} = 1.
$$

Let

$$
\alpha(x) := \frac{\beta(x)}{x},
$$

then by the condition of Theorem 3

$$
\lim_{x \to \infty} \alpha(x) = \alpha_0 \in (0, +\infty]
$$

and when $\alpha_0 < +\infty$, the function α is slowly varying.

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

Proof of Lemma 1

We prove Lemma 1 in two steps.

Step 1: The case $\alpha(x) = \frac{\beta(x)}{x}$ is slowly varying.

$$
\varphi(t) = \int_0^{+\infty} \mathbb{P}(e^{tX_e} > x) dx = 1 + \int_1^{+\infty} H(\frac{\ln x}{t}) dx.
$$

For large enough x and small $c>0$, let $\lambda_0=\alpha(c\beta^{-1}(x))$, one has

$$
\varphi(t) \le e^{c\beta^{-1}(x)t} + \int_{e^{c\beta^{-1}(x)t}}^{+\infty} e^{-\frac{\lambda_0}{t} \log y} dy
$$

$$
= e^{c\beta^{-1}(x)t} \left(\frac{\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0}\right)t}{\lambda_0 - t} \right)
$$

for all $0 < t < \lambda_0$.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯ . Ω

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

Then

$$
I((1+\epsilon)\beta^{-1}(x))
$$

\n
$$
\geq \sup_{0 < t < \lambda_0} \left[(1+\epsilon-c)\beta^{-1}(x)t - \log\left(\frac{\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0}\right)t}{\log(\lambda_0 - t)}\right) \right]
$$

\n
$$
= \sup_{0 < t < \lambda_0} \left[\frac{(1+\epsilon-c)}{\alpha(\beta^{-1}(x))}xt - \log\left(\frac{\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0}\right)t}{\log(\lambda_0 - t)}\right) \right]
$$

\n
$$
(1+\epsilon-c) \left[\frac{1}{\alpha(\beta^{-1}(x))} + \frac{1}{\alpha(\beta^{-1}(x))}
$$

$$
= \frac{(1+\epsilon-c)}{\alpha(\beta^{-1}(x))}xt_0 - \log\left[\lambda_0 - \left(1-e^{-c\beta^{-1}(x)\lambda_0}\right)t_0\right] + \log(\lambda_0-t_0).
$$

メロメ 大御き メミメ メミメン 差し 2990

Where $t_0 = t_0(x)$ fits the supremum. It is straightforward to check that

$$
\frac{\lambda_0}{t_0(x)} \to 1,
$$

$$
\frac{1}{x} \log \left[\lambda_0 - \left(1 - e^{-c\beta^{-1}(x)\lambda_0} \right) t_0 \right] \to 0 \text{ and}
$$

$$
\frac{1}{x} \log(\lambda_0 - t_0) \to 0
$$

as $x \to +\infty$. Thus, for small enough c, we have

$$
\frac{(1+\epsilon-c)}{\alpha(\beta^{-1}(x))}t_0 \to (1+\epsilon-c)\frac{\alpha(c\beta^{-1}(x))}{\alpha(\beta^{-1}(x))} > 1
$$

for large enough x , then $I((1+\epsilon)\beta^{-1}(x)) \geq x$ for large enough x .

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

Step 2: The case
$$
\alpha(x) := \frac{\beta(x)}{x} \nearrow \infty
$$
 and is NOT slowly varying.

In this step, for any $\epsilon > 0$, we try to find some $t_0 = t_0(n)$, such that

 $(1 + \epsilon)\beta^{-1}(\log n)t_0 - \log \varphi(t_0) \ge \log n$, for all large *n*.

Let
$$
\zeta(n) = \gamma(\beta^{-1}(\log n))/\alpha(\beta^{-1}(\log n))
$$
 and let

$$
t_0 = \gamma(\beta^{-1}(\log n)) = \zeta(n)\alpha(\beta^{-1}(\log n)).
$$

Using the variable substitution $s = \frac{\log x}{\zeta(n) \log x}$ $\frac{\log x}{\zeta(n)\log n}$, one has

$$
\int_1^{+\infty} H(\frac{\log x}{t_0}) dx = \zeta(n) \log n \int_0^{+\infty} n^{g(s)} ds,
$$

where

$$
g(s) = \zeta(n)s - \frac{\beta(s\beta^{-1}(\log n))}{\log n}.
$$

Then, for any $s_1 > 0$,

$$
\varphi(t_0) = 1 + \zeta(n) \log n \left[\int_0^{s_1} n^{g(s)} ds + \int_{s_1}^{+\infty} n^{g(s)} ds \right]
$$

Let s_1 be the solution of equation

$$
g(s) = -s
$$

such that, for $s > s_1$,

$$
g(s) < -s.
$$

Noticing that $\beta(x)$ increases strictly, one has $g'(1) = 0$, $g'(s) > 0$ when $s < 1$ and $g'(s) < 0$ when $s > 1$, then

$$
g(1) = \sup_{s \ge 0} g(s) = \zeta(n) - 1.
$$

 Ω

So,

$$
\varphi(t_0) = 1 + \zeta(n) \log n \left[\int_0^{s_1} n^{g(s)} ds + \int_{s_1}^{+\infty} n^{g(s)} ds \right]
$$

$$
\leq 1 + \zeta(n) \log n \left[s_1 n^{g(1)} + \int_0^{+\infty} n^{-s} ds \right]
$$

$$
\leq 1 + \zeta(n) \log n \cdot (s_1 n^{\zeta(n)-1} + constant).
$$

Now, for s_1 , we claim that,

 $\forall b > 0, s_1(n) \leq n^b$.

Then, for any $b > 0$,

$$
\varphi(t_0) \le 1 + \zeta(n) \log n \cdot (s_1 n^{\zeta(n)-1} + constant)
$$

$$
\le \zeta(n) \log n \cdot n^{\zeta(n)-1+b}
$$

for large enough n .

≮ ロ ▶ (御 ▶ (唐 ▶ (唐 ▶) 目 $2Q$

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

≮ロ ▶ ⊀ 御 ▶ ≮ 君 ▶ ≮ 君 ▶ ...

目

 $2Q$

About the claim

Actually, the equation $g(s) = -s$ can be rewritten as

$$
\gamma(\beta^{-1}(\log n)) + \alpha(\beta^{-1}(\log n)) = \alpha(s\beta^{-1}(\log n)).
$$

Then

$$
\gamma(\frac{s_1}{2}\beta^{-1}(\log n))\leq 4\gamma(\beta^{-1}(\log n)).
$$

Let $s(x)$ be the root of the equation

$$
\gamma(s(x)) = 4\gamma(x), x > 0. \quad (*)
$$

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

K ロ ▶ K 御 ▶ K ミ ▶

 $\rightarrow \equiv$ >

目

 $2QQ$

By the following Lemma 2, for any $b > 0$,

$$
s(x) \le e^{bx}
$$

for large x . Then,

$$
s_1(n) \le \frac{s_1(n)}{2} \beta^{-1} (\log n) \le s(\beta^{-1} (\log n)) \le s(\log n) \le n^b
$$

for large enough n .

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

◀ ロ ▶ . ◀ @ ▶ . ◀ ミ ▶

nar

Lemma 2 and its proof

Lemma 2: Suppose that $\lim_{x\to+\infty} \alpha(x) = +\infty$ and $\alpha(x)$ is not slowly varying, let $s(x)$ be the solution of equation $(*)$. Then under the condition of Theorem 3, one has

$$
\forall \ b > 0, \ s(x) \le e^{bx}
$$

for all large x .

Proof:

- \bullet s(x) is regularly increasing (by Assumption A2).
- **2** If not, α is slowly varying.

Now, we have, for any $b > 0$,

$$
\varphi(t_0) = 1 + \zeta(n) \log n \left[\int_0^{s_1} n^{g(s)} ds + \int_{s_1}^{+\infty} n^{g(s)} ds \right]
$$

$$
\leq 1 + \zeta(n) \log n \left[s_1 n^{g(1)} + \int_0^{+\infty} n^{-s} ds \right]
$$

$$
\leq \zeta(n) \log n \cdot n^{\zeta(n) - 1 + b}
$$

メロトメ 御 トメ 君 トメ 君 トー

 \equiv

 2990

for large enough n .

Hence, we have, for any $b > 0$

$$
(1 + \epsilon)\beta^{-1}(\log n)t_0 - \log \varphi(t_0) \ge (1 + \epsilon)\zeta(n)\log n - \log \varphi(t_0)
$$

$$
\ge \left[1 + \epsilon\zeta(n) - b - \frac{\log \zeta(n) + \log \log n}{\log n}\right] \log n
$$

Noticing that $\zeta(n) \geq 1$, then, by taking $b = \epsilon/2$, we have

$$
I((1+\epsilon)\beta^{-1}(\log n)) \ge \left[1 + \frac{1}{2}\epsilon\zeta(n) - \frac{\log\zeta(n) + \log\log n}{\log n}\right] \log n
$$

$$
\ge \log n
$$

for large n . Thus, we finish the second step of the proof.

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

K ロ ⊁ K 倒 ≯ K ミ ≯ K ミ ≯

 $2Q$

扂

Proof of Theorem 3

Lower bound part:

Theorem 2 has already given the lower bound

$$
f(n) = \beta^{-1} (\log n - \log \log n),
$$

so it suffices for us to prove that

$$
\lim_{n \to \infty} \frac{\beta^{-1} (\log n - \log \log n)}{\beta^{-1} (\log n)} = 1. \quad (**)
$$

When α is *slowly varying*, then for any $0 < c < 1$, one has

$$
1 \ge \frac{\beta^{-1}(\log n - \log \log n)}{\beta^{-1}(\log n)} \ge \frac{\beta^{-1}(c \log n)}{\beta^{-1}(\log n)} \to c
$$

目

 $2Q$

as $n \to \infty$, (**) follows by taking $c \nearrow 1$.

Otherwise, one has $\alpha_0 = +\infty$ and by A2, $\gamma(x)$ is strictly increasing, hence,

$$
\beta^{-1}(\log n) - \beta^{-1}(\log n - \log \log n)
$$

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ │ 결

 299

$$
= \int_{\log n - \log \log n}^{\log n} (\beta^{-1})'(y) dy
$$

=
$$
\int_{\log n - \log \log n}^{\log n} \frac{1}{\gamma(\beta^{-1}(y))} dy
$$

$$
\leq \frac{\log \log n}{\gamma(\beta^{-1}(\log n - \log \log n))}.
$$

[Introduction](#page-3-0) [Law of Large Number](#page-6-0)
<mark>[Proofs](#page-10-0)</mark> [Lemma 1](#page-10-0)

[Proof of Lemma 1](#page-12-0) [Proof of Theorem 3](#page-23-0)

メロメ メタメ メミメ メミメー

 \equiv

 2990

Then,

$$
\frac{\beta^{-1}(\log n) - \beta^{-1}(\log n - \log \log n)}{\beta^{-1}(\log n)}
$$

$$
\leq \frac{\log \log n}{\log n - \log \log n} \frac{\alpha(\beta^{-1}(\log n - \log \log n))}{\gamma(\beta^{-1}(\log n - \log \log n))}
$$

$$
\leq \frac{\log \log n}{\log n - \log \log n} \to 0
$$

as $n \to \infty$. Thus we get $(**)$.

Upper bound part:

We have

 $\mathbb{P}(W_n \geq (1+\epsilon)n\beta^{-1}(\log n))$

$$
\leq \sum_{\pi \in \Pi_{1,n}} \mathbb{P}(T(\pi) \geq (1+\epsilon)n\beta^{-1}(\log n)) \quad (\ast \ast \ast)
$$

 $\leq n! \cdot \mathbb{P}(S_n \geq (1+\epsilon)n\beta^{-1}(\log n)),$

where $S_n = \sum_{i=1}^n X_i$ and $\{X_i\}$ be i.i.d. random variables with the same distribution as X_e .

By Stirling's formula

$$
n!=n^n e^{-n} \sqrt{2\pi n} \left(1+O(\frac{1}{n})\right)
$$

and the basic large deviation inequality

$$
\mathbb{P}(S_n \ge an) \le e^{-I(a)n}, \text{ for } a > \mathbb{E}X_e,
$$

K ロ ⊁ K 倒 ≯ K 目 ≯ K 目 ≯

 $2Q$

the upper bound part of the theorem follows from (∗ ∗ ∗) and Lemma 1:

$$
\mathbb{P}(W_n \ge (1 + \epsilon)n\beta^{-1}(\log n))
$$

\n
$$
\le n! \cdot \mathbb{P}(S_n \ge (1 + \epsilon)n\beta^{-1}(\log n)),
$$

\n
$$
\le n! \cdot e^{-nI((1+\epsilon)\beta^{-1}(\log n))}
$$

\n
$$
\le e^{-n}\sqrt{2\pi n} (1 + O(\frac{1}{n})) n^n e^{-n \log n}
$$

\n
$$
= e^{-n}\sqrt{2\pi n} (1 + O(\frac{1}{n})) \to 0.
$$

メロメ 大御き メミメ メミメン 差し

 2990

[Lemma 1](#page-10-0) [Proof of Lemma 1](#page-12-0) [Lemma 2 and its proof](#page-20-0) [Proof of Theorem 3](#page-23-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君

 $2Q$

Thanks for your attention!