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The Model
Existence Theorem of Time Constant
µ =∞ case: to bound Wn/n.

Last passage percolation on complete graph

Gn = ([n], En): the complete graph , where

[n] = {1, 2, . . . , n}, En = {〈i, j〉 : 1 ≤ i < j ≤ n}.

{Xe : e ∈ En}: i.i.d. positive random variables, edge passage
times.

Π1,n: the set of all self-avoiding paths between vertex 1 and n.

T (π): the passage time of path π ∈ Π1,n

T (π) =
∑
e∈π

Xe.

Wn: the largest passage time among all self-avoiding paths from 1
to n, i.e.,

Wn = sup
π∈Π1,n

T (π).
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The Model
Existence Theorem of Time Constant
µ =∞ case: to bound Wn/n.

1. The time constant µ exists!

Theorem 1

For any distribution of edge passage time, the time constant of the
model exists. More precisely, there exists some constant
0 < µ ≤ ∞, such that

Wn

n
→ µ a.s.

as n→∞. In particular, when µ <∞, the above convergence is
also in L1. Furthermore, µ coincides with the essential supremum
of Xe, i.e.

µ = inf{x : P(Xe > x) = 0}.
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2. Lower and upper bounds for Wn/n

Let F (x) = P(Xe ≤ x) and H(x) = 1− F (x), x ∈ R be the
distribution function and the tail probability function of Xe. By
Theorem 1, when µ =∞, Wn/n tends to ∞ as n→∞. Here, we
give lower and upper bounds to Wn/n as in the following theorem.

Theorem 2

Suppose that µ =∞. Let f and g be two functions such that
H(f(n)) = lnn/n and n2H(g(n))→ 0 as n→∞. Then, for any
ε > 0

lim
n→∞

P
(

(1− ε)f(n) ≤ Wn

n
≤ g(n)

)
= 1.
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Statement of Result

A classification of increasing function

Typically increasing function:

Let’s consider the usual exponential function exp(x). For any
n ∈ Z, write expn(x) as the n-th iteration of the exponential
function. Note that, by convention, exp0(x) = x,
exp−1(x) = log(x), and exp−n(x) is the n-th iteration of log(x)
for n > 0.

A function ψ is called typically increasing, if ψ has the form

ψ(x) = a[expn(x)]b + c

with a, b > 0, c ∈ R, n ∈ Z, for large enough x ∈ R.
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Regularly increasing function:

A strictly increasing function φ is called regularly increasing if, it is
differentiable (at all large enough x), and increases “regularly”
compared to typically increasing functions:

for any typically increasing function ψ, IF for some increasing
sequence {xn} with limn→∞ xn =∞, one has φ(xn) ≥ ψ(xn),
THEN, for all large enough x,

• φ(x) ≥ ψ(x);

• φ(x)− ψ(x) and ψ−1(x)− φ−1(x) are monotone in x.

Where φ−1 and ψ−1 are the inverses of φ and ψ.

“Regular” means: φ− ψ and ψ−1 − φ−1 do not change their
monotonicity frequently!
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Assumptions

Rewrite H(x) = P(Xe > x), the tail probability of Xe, in the form

H(x) = e−β(x).

We assume β(x) satisfy the following technical conditions:

A1: β(x) is second-order differentiable and β′′(x) is
continuous;

A2: γ(x) := β′(x) is monotone. In the case when
limx→∞ γ(x) = +∞, γ(x) increases strictly and the
function s(x) solving the equation

γ(s(x)) = Dγ(x), D > 1,

is regularly increasing.
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Statement of Result

Theorem 3: Law of Large Number

Suppose that H(x) = P(Xe > x) = e−β(x). If for some t > 0,

ϕ(t) := E(etXe) <∞,

and the above assumptions A1 and A2 hold, then

Wn

nβ−1(log n)
→ 1

in probability as n→∞. Where β−1 is the inverse of β.
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For any x > 0, let I(x) be the Legendre transform of the cumulant
generating function logϕ, namely,

I(x) = sup
t>0

[xt− logϕ(t)].

First of all, we have the following lemma.

Lemma 1: Under the condition of Theorem 3, for any ε > 0, one
has

I[(1 + ε)β−1(log n)] ≥ log n

for all large enough n.
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Slowly varying function

A function f is called slowly varying, if for any 0 < c < 1,

lim
x→+∞

f(cx)

f(x)
= 1.

Let

α(x) :=
β(x)

x
,

then by the condition of Theorem 3

lim
x→∞

α(x) = α0 ∈ (0,+∞]

and when α0 < +∞, the function α is slowly varying.
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Proof of Lemma 1

We prove Lemma 1 in two steps.

Step 1: The case α(x) =
β(x)

x
is slowly varying.

ϕ(t) =

∫ +∞

0
P(etXe > x)dx = 1 +

∫ +∞

1
H(

lnx

t
)dx.

For large enough x and small c > 0, let λ0 = α(cβ−1(x)), one has

ϕ(t) ≤ ecβ−1(x)t +

∫ +∞

ecβ
−1(x)t

e−
λ0
t

log ydy

= ecβ
−1(x)t

λ0 −
(

1− e−cβ−1(x)λ0
)
t

λ0 − t


for all 0 < t < λ0.
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Then

I((1 + ε)β−1(x))

≥ sup
0<t<λ0

(1 + ε− c)β−1(x)t− log

λ0 −
(

1− e−cβ−1(x)λ0
)
t

log(λ0 − t)


= sup

0<t<λ0

(1 + ε− c)
α(β−1(x))

xt− log

λ0 −
(

1− e−cβ−1(x)λ0
)
t

log(λ0 − t)


=

(1 + ε− c)
α(β−1(x))

xt0 − log
[
λ0 −

(
1− e−cβ−1(x)λ0

)
t0

]
+ log(λ0 − t0).
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Where t0 = t0(x) fits the supremum. It is straightforward to check
that

λ0

t0(x)
→ 1,

1

x
log
[
λ0 −

(
1− e−cβ−1(x)λ0

)
t0

]
→ 0 and

1

x
log(λ0 − t0)→ 0

as x→ +∞. Thus, for small enough c, we have

(1 + ε− c)
α(β−1(x))

t0 → (1 + ε− c)α(cβ−1(x))

α(β−1(x))
> 1

for large enough x, then I((1 + ε)β−1(x)) ≥ x for large enough x.
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Step 2: The case α(x) :=
β(x)

x
↗∞ and is NOT slowly varying.

In this step, for any ε > 0, we try to find some t0 = t0(n), such
that

(1 + ε)β−1(log n)t0 − logϕ(t0) ≥ log n, for all large n.

Let ζ(n) = γ(β−1(log n))/α(β−1(log n)) and let

t0 = γ(β−1(log n)) = ζ(n)α(β−1(log n)).

Using the variable substitution s = log x
ζ(n) logn , one has∫ +∞

1
H(

log x

t0
)dx = ζ(n) log n

∫ +∞

0
ng(s)ds,

where

g(s) = ζ(n)s− β(sβ−1(log n))

log n
.
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Then, for any s1 > 0,

ϕ(t0) = 1 + ζ(n) log n

[∫ s1

0
ng(s)ds+

∫ +∞

s1

ng(s)ds

]
Let s1 be the solution of equation

g(s) = −s

such that, for s > s1,
g(s) < −s.

Noticing that β(x) increases strictly, one has g′(1) = 0, g′(s) > 0
when s < 1 and g′(s) < 0 when s > 1, then

g(1) = sup
s≥0

g(s) = ζ(n)− 1.
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So,

ϕ(t0) = 1 + ζ(n) log n

[∫ s1

0
ng(s)ds+

∫ +∞

s1

ng(s)ds

]
≤ 1 + ζ(n) log n

[
s1n

g(1) +

∫ +∞

0
n−sds

]
≤ 1 + ζ(n) log n ·

(
s1n

ζ(n)−1 + constant
)
.

Now, for s1, we claim that,

∀ b > 0, s1(n) ≤ nb.

Then, for any b > 0,

ϕ(t0) ≤ 1 + ζ(n) log n ·
(
s1n

ζ(n)−1 + constant
)

≤ ζ(n) log n · nζ(n)−1+b

for large enough n.
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About the claim

Actually, the equation g(s) = −s can be rewritten as

γ(β−1(log n)) + α(β−1(log n)) = α(sβ−1(log n)).

Then
γ(
s1

2
β−1(log n)) ≤ 4γ(β−1(log n)).

Let s(x) be the root of the equation

γ(s(x)) = 4γ(x), x > 0. (∗)
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By the following Lemma 2, for any b > 0,

s(x) ≤ ebx

for large x. Then,

s1(n) ≤ s1(n)

2
β−1(log n) ≤ s(β−1(log n)) ≤ s(log n) ≤ nb

for large enough n.
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Lemma 2 and its proof

Lemma 2: Suppose that limx→+∞ α(x) = +∞ and α(x) is not
slowly varying, let s(x) be the solution of equation (∗). Then
under the condition of Theorem 3, one has

∀ b > 0, s(x) ≤ ebx

for all large x.

Proof:

1 s(x) is regularly increasing (by Assumption A2).

2 If not, α is slowly varying.
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Now, we have, for any b > 0,

ϕ(t0) = 1 + ζ(n) log n

[∫ s1

0
ng(s)ds+

∫ +∞

s1

ng(s)ds

]
≤ 1 + ζ(n) log n

[
s1n

g(1) +

∫ +∞

0
n−sds

]
≤ ζ(n) log n · nζ(n)−1+b

for large enough n.
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Hence, we have, for any b > 0

(1 + ε)β−1(log n)t0 − logϕ(t0) ≥ (1 + ε)ζ(n) log n− logϕ(t0)

≥
[
1 + εζ(n)− b− log ζ(n)+log logn

logn

]
log n

Noticing that ζ(n) ≥ 1, then, by taking b = ε/2, we have

I((1 + ε)β−1(log n)) ≥
[
1 + 1

2εζ(n)− log ζ(n)+log logn
logn

]
log n

≥ log n

for large n. Thus, we finish the second step of the proof.
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Proof of Theorem 3

Lower bound part:

Theorem 2 has already given the lower bound

f(n) = β−1(log n− log log n),

so it suffices for us to prove that

lim
n→∞

β−1(log n− log logn)

β−1(log n)
= 1. (∗∗)
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When α is slowly varying, then for any 0 < c < 1, one has

1 ≥ β−1(log n− log log n)

β−1(log n)
≥ β−1(c log n)

β−1(log n)
→ c

as n→∞, (∗∗) follows by taking c↗ 1.
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Otherwise, one has α0 = +∞ and by A2, γ(x) is strictly
increasing, hence,

β−1(log n)− β−1(log n− log log n)

=

∫ logn

logn−log logn
(β−1)′(y)dy

=

∫ logn

logn−log logn

1

γ(β−1(y))
dy

≤ log log n

γ(β−1(log n− log logn))
.
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Then,

β−1(log n)− β−1(log n− log logn)

β−1(log n)

≤ log log n

log n− log log n

α(β−1(log n− log logn))

γ(β−1(log n− log log n))

≤ log log n

log n− log log n
→ 0

as n→∞. Thus we get (∗∗).
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Upper bound part:

We have

P(Wn ≥ (1 + ε)nβ−1(log n))

≤
∑

π∈Π1,n

P(T (π) ≥ (1 + ε)nβ−1(log n))

≤ n! · P(Sn ≥ (1 + ε)nβ−1(log n)),

(∗ ∗ ∗)

where Sn =
∑n

i=1Xi and {Xi} be i.i.d. random variables with the
same distribution as Xe.
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By Stirling’s formula

n! = nne−n
√

2πn

(
1 +O(

1

n
)

)
and the basic large deviation inequality

P(Sn ≥ an) ≤ e−I(a)n, for a > EXe,

the upper bound part of the theorem follows from (∗ ∗ ∗) and
Lemma 1:
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P(Wn ≥ (1 + ε)nβ−1(log n))

≤ n! · P(Sn ≥ (1 + ε)nβ−1(log n)),

≤ n! · e−nI((1+ε)β−1(logn))

≤ e−n
√

2πn
(
1 +O( 1

n)
)
nne−n logn

= e−n
√

2πn
(
1 +O( 1

n)
)
→ 0.
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Thanks for your attention!


	Introduction
	The Model
	Existence Theorem of Time Constant
	= case: to bound Wn/n.

	Law of Large Number
	A classification of increasing function
	Statement of Result

	Proofs
	Lemma 1
	Proof of Lemma 1
	Lemma 2 and its proof
	Proof of Theorem 3


